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ABSTRACT

A new formalism is given for read-modify-write (RMW) synchronization opera-

tions. This formalism is used to extend the memory reference combining mechan-

ism, introduced in the NYU Ultracomputer, to arbitrary RMW operations. A for-

mal correctness proof of this combining mechanism is given. General requirements

for the practicality of combining are discussed. Combining is shown to be practical

for many useful memory access operations. This includes memory updates of the

form mem_val := mem_val op val, where op need not be associative, and a variety

of synchronization primitives. The computation involved is shown to be closely re-

lated to parallel prefix evaluation.

1. Introduction

Shared memory provides convenient communication between processes in a tightly

coupled multiprocessing system. Shared variables can be used for data sharing, informa-

tion transfer between processes, and, in particular, for coordination and synchronization.

Constructs such as the semaphore introduced by Dijkstra in [Di], and the many variants

that followed, provide convenient solutions to many synchronization problems involving

arbitrary number of processes. These constructs are supported in hardware by machine

instructions that atomically execute a Read-Modify-Write cycle. Such instructions exist on

most modern CPU's.

An atomic Read-Modify-Write operation only requires that it be semantically atomic,

although it is often processed atomically also. The "serial bottleneck" created by this

atomic processing, while acceptable for small scale parallelism, can seriously impair the

performance of a system with thousands of processors.

Frequent accesses to a shared variable not only slow down those processes performing

the access, but may cause the entire machine to thrash. Large-scale shared memory paral-

lel processors are likely to use multistage packet switched interconnection networks for

processor to memory traffic. These networks provide high bandwidth and short latency

time when memory accesses are distributed randomly, but, if even a small percentage of

the memory requests are directed to one specific spot, the network becomes congested and

performance quickly degrades. A recent study of Pfister and Norton [PN] shows that not

only those processors attempting to access the same "hot spot" are delayed, but also the

remaining processors. Although replication of data can often be used to circumvent the hot

spot problem for read-only data, it cannot be used for synchronization variables.



The performance degradation can be mitigated by a memory request "combining"

technique (which will be described later). Briefly, combining works as follows: When a

"conflict" occurs within the network for the same switch output port for memory requests

directed to the same location, a new combined request that represents the conflicting

requests is created. Separate replies to the original requests are later created from the

reply to the combined request. The logic for combining and uncombining memory refer-

ences is distributed throughout the processor to memory interconnection network.

It is worthwhile emphasizing that such simultaneous requests directed at the same

memory cell are not random, rare events. When processed in an efficient manner, they

can form the basis for a completely parallel, decentralized operating system as well as a

building block for efficient parallel programming constructs. A general discussion of the

cost/performance tradeoffs of the combining mechanism has been argued elsewhere.

Indeed, such a mechanism was proposed for read requests in the CHoPP machine

[SBK]. It was extended to handle write requests, and some types of Read-Modify-Write

requests [Ru] and further generalized for associative Read-Modify-Write operations [GK].

These ideas are used to implement concurrent reads, writes, and "Fetch-and-Adds" in the

NYU Ultracomputer [GGK] and IBM RP3 [PBH] machines.

The semantics of serial processes are well understood; it is relatively easy to argue on

the correctness of serial computers. The situation is quite different for parallel systems:

Satisfactory definitions of their semantics have only recently evolved ([LyF], [Lai], [La2],

[La3]) and our intuition often fails when trying to formally reason about parallel systems.

Therefore, it is important to precisely define correctness criteria for parallel systems and to

formally argue that these criteria are fulfilled.

We show that combining fulfills two important criteria: (1) Combining is a general

technique that applies to arbitrary memory access operations, not just an ad hoc method to

handle the NYU Ultracomputer operations. (2) This new interconnect mechanism does not

change the properties of the processor-memory system.

In this paper we address these issues rigorously. A new, very general formalism for

read-modify-write (RMW) operations is given. A general definition is given of a correct

machine implementation. A method for combining general RMW operations is given and

proven to be correct. Several families of memory access operations are analyzed using this
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general framework. This includes familiar operations such as load, store, swap, test-and-

set, fetch-and-add, and general data-level synchronization primitives (see [GP]). It is well

known that any associative operation can be combined efficiently [GK]. We show that

other combinable families of operations include the four standard arithmetic operations, all

sixteen boolean functions, and synchronization methods such as full/empty bits. Implemen-

tation issues concerning support of such primitives are considered. Finally, the combining

mechanism is shown to be closely related to the parallel prefix computation problem [LaF].

2. Read-Modify-Write

We use a formalism similar to that developed by Lynch and Fisher [LyF]: A parallel

computation consists of a set of processes that execute in parallel. Each of these processes

is considered to be a sequential program augmented with the ability to access global,

shared variables. We restrict our attention to shared memory access techniques and

assume standard operations for manipulation of local (or private) data.

Instead of the usual load and store memory access operations of sequential processing,

all accesses to shared variables are assumed to be Read-Modify-Write (RMW) operations.

The operation (or instruction) RMW(X,f), where X is a shared variable and / is a map-

ping, is defined to be equivalent to the indivisible execution of the following function:

function RMW(X,f)
begin

temp - X;

X -f(X);

return(temp)

end

This operation yields, as its value, the old value of the variable X and also updates the

value stored in X according to the updating transformation/.

The usual load and store operations are particular cases of RMW operations: a load

from (the address of) variable X is equivalent to RMW(X,id), where id is the identity

mapping (i.e. f(x) = x). A store of value v to variable X is equivalent to RMW(X,Iv),

where ly is the mapping that has constant value v (i.e. f(x) = v); the returned value is

ignored. In fact, an assignment of the form Y •^RMW(X,Iy), where Y is a private vari-

able and X is a shared variable, implements a swap instruction: X and Y swap values.

Note that the usual use of swap instructions is to exchange values between a shared
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variable (the lock) and a private variable (the key) (see, e.g. [PET], §9.5.4).

The well known test-and-set instruction can also be implemented as an RMW instruc-

tion. We have

test-and-set(X) = RMW(X,Itrue) •

A more powerful RMW operation is the fetch-and-add synchronization primitive. It is

defined by

fetch-and-add(X,a) = RMW(X,+a) ,

where +a is Curried addition, i.e. +a(x) = x + a. It corresponds to the indivisible execu-

tion of the following code.

function fetch-and-add(X,a)

begin

temp ^ X;

X -X + a;

return(temp)

end

A similar operation (replace-add) was introduced many years ago [DGSS]. It was

independently considered by Dijkstra [Di] who rejected it, beheving it to be an inadequate

tool for synchronization. It nevertheless turned out to be a very useful synchronization

primitive, and was essential in the development of efficient coordination code for the NYU

Ultracomputer operating system [Ru],[GLR]. The change from replace-add to fetch-and-

add [GK] simplified the combining logic and paved the way to the general result given in

this paper.

Any memory access that consists of reading one shared memory location, performing

an arbitrary local computation, then updating the memory location can be expressed as an

RMW operation of the above form. This is the general form for memory accesses

assumed by [LyF], and seems to encompass most, if not all, useful synchronization opera-

tions based on shared variables. Other examples of RMW operations will be presented in

later sections.
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3. Semantics

In their classic paper describing the IBM 360 system, Amdahl, Blaauw, and Brooks

[ABB] introduced the notions of architecture, implementation, and realization. The archi-

tecture can be thought of as the abstract machine that is presented to the user at the assem-

bly language level or presented in the principles of operations manual. The implementa-

tion is how hardware is used to implement the features and operations of the architecture.

The realization is the exact specification of the hardware, such as which chips are used and

how they are wired together. In an implementation, each "atomic" operation of the archi-

tecture may actually consist of several "subatomic" microoperations; the implementation

may use stores^ that are not visible to the user. The implementation is correct if its visible

behavior is a correct behavior of the architecture: the initial to final state mapping on visi-

ble stores is the same for the architecture as for the implementation. A similar situation

holds for the realization. These definitions can be extended and generalized to all the lev-

els of an architecture, software and hardware. At each level an architecture is imple-

mented by a lower one; the implementation is correct if it yields the same visible behavior.

3.1. Definitions

We use a formalism similar to that developed by Lamport [Lal],[La3]. The state of a

machine is represented by the values of its stores. There are stable stores, such as

memory, registers, status flags, etc., and transient stores, such as messages. Stable stores

support nondestructive read and write operations. Messages are created by message

transmission operations, and destroyed by message reception operations. They are used

for internal communication and communication with the external world (I/O messages).

The execution of the computer can be viewed as consisting of a set of atomic events.

Each atomic event may modify the value of one or more stores, and create or receive one

or more messages. The semantics of an atomic event is defined by a mapping that specifies

the state transformation associated with it: messages consumed, messages created and their

values, and new values of modified stores. This naturally extends to a definition of the

semantics of a sequence of atomic events by composition of mappings: in a sequence,

event i+1 produces a new state based on the state produced by event i.

^ In this section and the next, the term store will denote the state information; the term write will denote
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We assume that one can observe the initial contents of the stores, the final content of

the stores, and the order of I/O events (input reception and output transmission) as well as

their values. That is, the observable behavior of a system consists of the (i) initial state to

final state mapping induced by the computation and (ii) the sequence of I/O events occur-

ring during the computation. Since we can observe the time (or order) of each external

communication event, we can consider them to be totally ordered.

Many atomic events may occur concurrently; the order of occurrence of two events is

significant only if their execution order affects the observable behavior of the system. This

motivates the following definitions. Two sequences of events are equivalent if for any ini-

tial value of the stores and any sequence of input messages, the execution of these two

sequences yield the same final values of the visible stores and the same sequence of I/O

events. A system execution is a set of events partially ordered by a relation - such that any

two extensions of - to total orders yield equivalent sequences of events. We say that event

a precedes event (3 if a - p. Our definition implies that the execution order - captures all

dependencies that exist between atomic events.

The definition of a system execution (usually) implies that the relation -> has the fol-

lowing properties:

(1) If u and V access the same store, and one of the accesses is a write access then either

u-v or v->u. (An event "reads" the stores that are in the domain of the mapping asso-

ciated with it, and "writes" the stores that are in the range of this mapping.)

(2) If u and v are external communication events and u occurs before v then u-v

(remember that external communication events are totally ordered).

(3) If u creates a message and v receives that message then u-v.

The architecture of a computer is understood in terms of operations; each operation

may consist of several atomic events. The partial order relation - on atomic events induces

a relation, denoted by 6, on operations. Operation u precedes operation v, i.e. u e v, if

some event of u precedes some event of v.

Correctness criteria are expressed in terms of constraints on possible system execu-

tions; a system is defined by the set of legal system executions. For example, if operations

the store operation.
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are required to be atomic then the execution relation € induced by - must be a partial

order: A cycle uC • • • Cu implies that some event, say 3, of an operation, say v, can be

seen to occur after some event, say aj, belonging to u, i.e. (aj - P), and before some

other event, say a2 belonging to u, i.e. O - 02); this implies u is not indivisible. Con-

versely, if the execution relation induces a partial order on operations then it can be

extended to a total order so that events belonging to the same operation are contiguous:

The outcome of the execution is as if the operations were executed serially, with each

operation terminating before the next one starts.

3.2. Composing Systems from Subsystems

It is often convenient to define a system as a composition of subsystems. The stores

of the system are the stores of the subsystems and the events of the system are events of

the subsystems. We assume that subsystems communicate only by messages: an event of a

subsystem may modify only stores of that subsystem, but it may create a message that is

latter consumed by another subsystem. (This is similar to the work pioneered by Milner

and Milne [MM] in the context of synchronous communicating processes.)

The semantic specification of the global system is derived from the semantic specifica-

tions of the composing subsystems. Each event is associated with the corresponding map-

ping in its subsystem. The set of legal system executions is defined as follows:

Let - be partial order on events of the system. This order induces an ordering of the

events within each subsystem. This partial order is not necessarily an execution order: the

relation - may not define an order on communication events that are external to a subsys-

tem but internal to the global system. When a subsystem is considered in isolation, the

order in which it executes external communication events is deemed meaningful; when it is

part of a bigger system the order of its communication with other subsystems may not be

meaningful, i.e. does not necessarily affect the global behavior of the system.

The relation - defines a correct system execution if it can be extended (by ordering all

communication events within each subsystem) to a relation => , such that the restriction of

==>• to each subsystem is a correct execution of the subsystem. Informally, a global system

execution is correct if each subsystem may view it as a correct local system execution,

where these different views are consistent.
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3.3. An Example — The Uniprocessor

For example, we can consider a serial computer to consist of two separate subsystems:

processor and memory. The processor executes a stream of instructions. The memory

accepts a stream of requests (read, write, read-modify-write, etc.). Each request may

modify the memory content and return a value.

Assume we have a formal definition for a correct execution by a serial processor.

Informally, such a definition associates with each instruction a sequence of memory

accesses and a mapping that computes the next state of the processor, given the current

state and the values returned from memory. It specifies that instructions are executed

atomically, so that the outcome of the execution of a stream of instructions can be com-

puted by composing the mapping associated with each consecutive instruction. An execu-

tion totally orders successive instructions executed by a processor.

Similarly, we assume the existence of a formal definition for a correct execution by

memory. A memory operation consists of three events:

(1) receives a memory request message;

(2) processes the request, possibly modifying the memory content; and

(3) sends a reply message (we assume that all accesses generate replies; the reply is an

acknowledgment for accesses that do not return values).

We have M.receive. request -» M.process. request - M. send.reply; memory operations are

executed atomically.

A correct execution of the system must respect data dependencies: if instruction u pre-

cedes instruction v, and both access the same memory location, then the access on behalf of

u must occur before the access on behalf of v. This correctness condition does not occur

explicitly in our definitions; it pertains neither to the processor nor to the memory, but to

their interaction. We shall show that it implicitly follows from the correctness require-

ments of the subsystems.

Let - be a partial order defined by a correct execution of the system consisting of pro-

cessor and memory, and let 6 be the relation induced on instructions. Let u and v be two

processor instructions that access the same memory location such that one of the instruc-

tions is a write and v follows u. We have uCv. Assume, by contradiction, that the
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memory access on behalf of v is executed before the memory access on behalf of u, i.e

M.process. request. V - M.process. request.u .

Since, by the ordering of events of an operation, we know that

P. send. request.V - M.receive. request. v - M. process. request.

v

and

M. process.request. u - M. send.reply.u - P. receive.reply.u
,

we get the ordering:

P. send. request.V - M. receive. request. v - M. process. request.

v

- M.process.request.u -> M. send.reply. u - P. receive. reply.

u

so that vEu, and - cannot be extended to relation that induces a partial order on processor

instructions.

A correct implementation of the processor/memory system must ensure that memory

accesses are executed in an order consistent with the order instructions are issued, when-

ever there is a memory access conflict. Thus, the outcome of a (correct) execution is as if

the instructions were executed serially.

3.4. Multiprocessors

We wish to extend these definitions to a shared memory multiprocessor. Such a

machine consists of several processors and several shared memory modules. Each proces-

sor and memory module is defined as in the previous example. We assume the existence

of a formal definition for the correct execution for a processor, and of correct execution

for a memory module.

The correctness of the entire system is derived as previously: an execution relation -

is correct if it can be extended to a relation, ^ , that correctly orders events at each pro-

cessor and at each memory module. If the execution is correct then the atomic events can

be serially ordered so that events pertaining to the same processor instruction are contigu-

ous. The outcome of the execution is as if the instructions were executed serially, with all

events of one instruction terminating before any event of then next instruction starts, so

that for each processor the subsequence of events of this processor is a valid execution for
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the processor. This is the "sequential consistency principle" stated by Lamport [Lai]. It

implies that we can view a multiprocessor as a system of sequential processes communicat-

ing via shared variables, where each instruction is an atomic operation [LyF]; access to

(shared) memory is perceived to occur simultaneously with the execution by the processor

of the instruction that generates the access.

3.5. Asynchronous Memory Access

The sequential consistency principle can be enforced in hardware either by using a

central controller for memory accesses [Lai] or by requiring each processor to wait for an

acknowledgement after each shared memory access (before beginning to process the next

shared memory access). Both choices, however, severely limit the performance of a large

scale parallel processor. A central controller becomes a serial bottleneck when there are a

large number of processors. The network latency time is long (as compared to the basic

instruction cycle time of each processor) in a shared memory machine with a large number

of processors and/or memory modules. This latency time overhead can be mitigated by

allowing the processor to continue processing before receiving an acknowledgment. For

example, the NYU Ultracomputer and RP3 hardware allow the pipelining of shared

memory accesses from the processors.

These machines present the user with a shared memory multiprocessor architecture

with the following types of atomic events:

(1) Execution of a local instruction, i.e. instructions that involve only local stores; and

(2) Execution of events comprising a shared memory access operation (an RMW opera-

tion). We assume that each such operation involves only one shared memory module

and consists of three atomic events:

SEND - a request message is issued by the processor.

ACCESS - the request message is consumed by a memory module, the request is

executed, and a reply message is generated.

RECEIVE - the reply message is consumed by the processor.

The three components of the same shared memory access operation are ordered

SEND - ACCESS - RECEIVE .
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The control logic of each processor may impose constraints on the sequencing of the

events executed by the processor. However, it does not necessarily wait for a reply

from a shared memory access before proceeding with another event.

We call a machine with such an architecture a Multiprocessor with Asynchronous

Shared Memory or MASM. A MASM architecture does not necessarily fulfill the sequential

consistency principle, i.e. is not "correct" according to the usual definitions; however, it

can implement a sequentially consistent multiprocessor. The sequential consistency princi-

ple is enforced by a software solution, involving compile time analysis of the global code,

that specifies constraints on the pipelining. These constraints are enforced by the control

logic of each processor. For example, the NYU and RP3 software distinguishes between

"private" variables, "shared" read-only variables and "shared" read/write variables (all of

which can be stored in shared memory), and prohibits the pipelining of accesses to vari-

ables of the latter type. Shasha and Snir [SS] propose a more elaborate analysis based on

compile time detection of data dependencies; this analysis is used to define "delay" pairs,

i.e. pairs of memory accesses at the same processor such that the first access must com-

plete before the second starts.

The last definition did not mention the communication medium between processors

and memories. We assume that this interconnection network is "invisible"; its state is not

observed by the user. Note, too, that we assume asynchronous processor to memory com-

munication; it is only the relative order of events that affect the result, not the absolute

time of their execution. Our formalism does not encompass synchronous communications,

or time-out mechanisms.

4. Combining Mechanism

There have been many proposals for the architecture for parallel processors. The

main issue is how to interconnect the processors so that they may communicate efficiently.

While shared bus type architectures are well suited for interconnecting dozens of proces-

sors and memory modules, multistaged interconnection networks appear to be required for

larger scaled parallel machines. We first describe our assumptions concerning the inter-

connection network and then give a general technique for "combining" common shared

memory requests. We show that this implementation is correct in the sense described in

the previous section.
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4.1. Processor to Memory Connection

We assume a MASM architecture as defined in §3.5, and for the sake of definiteness,

make the following additional assumptions:

(1) The processors communicate with shared memory modules via a multistaged intercon-

nection network. The network is packet switched. It may be either multistage or

recirculating.

(2) A reply message is sent back on the same path followed by the request message. This

condition is trivially satisfied for multistage networks that have a unique path connect-

ing each processor to each memory module. It is easy to enforce the condition in any

network: A message can construct as it travels through the network a header describ-

ing its path; this header is used to route the reply in the reverse direction [GGK].

These assumptions are also made in the NYU Ultracomputer [GGK] and IBM's RP3

machine [PBH].

4.2. How to Combine Requests

We assume that memory accesses are RMW operations. A memory request message

has the form <id,addr,f>, where id is an identifier that uniquely identifies the request,

addr is a reference (address) to a memory location,^ and /is (the encoding of) a mapping.

When this message reaches memory, (giaddr, the contents of location addr, is replaced by

f((Siaddr), and a message <id,(2'addr> containing the original contents of location addr is

returned.

Suppose that two request messages of the form <idi,addr,f> and <id2,addr,g> meet

at the same switch. These two messages have the same destination and thus conflict. We

propose combining these two messages into a single message. This is done as follows:

(1) The switch stores idj, id2, and /and forwards the message <id],addr,fog>, where fog

is (an encoding of) the composition^ of/and g.

(2) When a reply message <idi,val> to this composed request reaches the switch, the

stored information is retrieved by matching the id's; a message <id;i,val> is

^ The address may be part of the identifier. Thus, if each processor has at most one outstanding request to

each address, then the processor number can be used as identifier.
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forwarded as a reply to the first request <idi,addr,f>, and a message <id2,f(val)> is

forwarded as a reply to the second request <id2,addr,g>.

Assume that the combined request <idi,addr,fog> is not further combined in the net-

work. Then <idi,@addr> is returned as a reply, and the value @addr is replaced in

memory by g(f(@addr)). At the switch the reply <idi,@addr> is forwarded (back) to the

first request, and the reply <id2,f(@addr)> is forwarded (back) to the second request.

This is illustrated in Figure 1. The final effect is as if the first request was executed,

returning the value @addr and replacing it in memory with fi@a.ddr), and then the second

request was executed, returning the value f((a)addr) and replacing it with g(f(@addr)).

Combining is transparent: the operations executed by the processors and the final memory

content are the same as would occur without combining.

4.3. Correctness of Combining Mechanism

We now show that this implementation is correct: The observable behavior in a com-

putation of a combining machine is a behavior that could be observed in a computation of a

noncombining machine. Note that the reverse is not necessarily true: There are sequences

of observable events that occur in a noncombining machine but can not occur in a combin-

ing one. (We follow what Lamport calls the "restrictive" approach to specification [La3].)

Our implementation does not change the set of operations executed by the processors;

it is transparent to the processor logic. It may reduce the number of ACCESS operations

that are executed; however, the memory state that occurs after the execution of an ACCESS

operation in the combining machine could occur in some valid computation of the noncom-

bining machine (after the execution of some sequence of ACCESS operations). In other

words, for each sequence of operations in a combining machine there exists a sequence of

operations in a noncombining machine that is equivalent in the following sense:

(1) The same operations, in the same order, are executed by the processors in either

machine.

(2) The value of each RECEIVE message is the same in both machines.

(3) The final value of each shared memory location is the same in both machines.

We use fog(x) to denote g(f(x)).
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Note that this does not imply that the combining machine satisfies the sequential con-

sistency principle. It only implies that the combining machine is a correct implementation

of a MASM architecture. Any mechanism that can be used by the processors of a noncom-

bining machine to enforce sequential consistency will achieve the same goal on a combining

machine.

In general, a combined request can be further combined. An inductive proof is

needed to show that the final outcome is correct. In a noncombining network each SEND is

associated with one ACCESS and one RECEIVE; in a combining network each SEND is associ-

ated with one RECEIVE, but several SEND operations may result in one (combined) ACCESS.

Each memory request message in the network is associated with a sequence of

memory request messages issued by processors. A memory request issued by a processor

represents itself; if memory request A was obtained by combining B with C, where B

represents requests bj, • • ,bi and C represents requests Cj, • • • ,Cj, then we say A

represents requests bi, • • • ,bi,Ci, • • ,Cj.

Lemma: Consider a combining machine as in §4.2. Let A = <id,addr,f> be a memory

request message, representing requests aj = <idi,addr,fi>, • •
, an = <idn,addr,fn>.

Let a'i be the reply message associated with a^, i.e. the reply message <idj,val> received

by the processor that issued a^. Then

(1) f = fio ofn;

(2) The values returned by all of the a'j are the same as would be returned if the memory

accesses associated with requests a^, • ,^^ in a noncombining network were exe-

cuted consecutively.

(3) If request A reaches memory without being combined, the value stored at location

addr after execution of request A is the same as the final value stored at location addr

after consecutively executing the memory accesses associated with a^, • • • ,an in a

noncombining network.

Proof: The lemma is proven by induction on the number of requests represented by a

memory access message. It is trivial for a message that represents one request. Next,

assume that the lemma is true for messages representing less than n requests, and assume
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that A is obtained by combining B and C, where B represents r requests and C represents

n-r requests (l<r<n). Let B = <id^,addr,g> and C = <id^,addr,h>, so that

A - <id^,addr,goh>. Then message A generates a reply <id^,val>, which will also be

the reply to request B; request C generates the reply <id^,g(val)>. If A reaches memory

then val = @addr and the new value in memory is h(g(@addr)).

Let bj = <idi',addr,gi>, • •

, b^ = <idj',addr,gi.> be the sequence of requests B

represents; similarly, let Cj = <idi,addr,hi>, • • •
, Ci,_r = <idn_j,addr,hn_i.> be the

sequence of requests C represents. Let b'j and c'j be the reply messages associated with

the respective requests. By the inductive assertion, g = g^o • • ogj. and

h = hjo • • • ohn_r; the messages b'j return the values val, gi(val),

gr-i( • • (gi(val)) • • • ); the messages c'; return the values g(val), hi(g(val)), ....

hn_r_i( • • • (hi(g(val))) • • • )• It follows that the values returned, and the new memory

value when A reaches memory are as if the memory accesses associated with

bj, • • ,br,ci, • • • ,Cn_i. in a noncombining network were successively executed in this

order. This proves the lemma.

Theorem: The implementation of shared memory access by a combining network is

correct.

Proof: The previous lemma clearly implies the theorem: Indeed, let a^, • • • .a,, be a seri-

alization of the events in an execution of a machine with a combining network. Replace

each ACCESS event a; by the sequence of ACCESS events associated (in a machine with non-

combining network) with the requests represented by the message that generated a;. Then

all events occurring at processors appear in the same order in both sequences; the RECEIVE

messages return the same values; and the shared memory state after the execution of an

ACCESS event in the first sequence is identical with the memory state after execution of the

corresponding sequence of ACCESS events in the second sequence.

5. Applications

Suppose one intends to combine RMW requests with mappings from some family $ of

transformations. Composition can generate any mapping in the semigroup'' <t> spanned by
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$. We need to have an encoding for the mappings in $ so that

(1) the computer representations of mappings from $ have reasonable size;

(2) the encoding of fog can be easily computed from the encoding of/ and the encoding of

g; and

(3) f(a) can be easily computed from the computer representations of/ and a.

We shall not give a formal definitions of "reasonable" or "easily computed", as these are

application dependent; we have in mind encodings that use a small constant number of

words, and computations that require few machine cycles. We say that <E> is tractable if it

fulfills these conditions.

5.1. Loads and Stores

Recall that a load from variable X is equivalent to RMW(X,id), where id is the iden-

tity mapping, and a store (actually a swap) of value v to variable X is equivalent to

RMW(X,Iv), where ly is the mapping that has constant value v. The set of mappings

{Iv}[j{id} is a semigroup, and composition is easily computed. A mapping from this semi-

group is represented by one computer word and one opcode bit. The composition yields

the expected results:

• A load followed by a load combine into a load.

• A load followed by a store combine into a store (the value fetched is returned to the

load).

• A store followed by a load combine into a store (the value being stored is returned to

the load).

• A store followed by a store combine into a store of the second value.

One need not transmit the value returned by a store request, as this is of no interest;

an acknowledgment suffices. A combined request needs to return a value only if the first

atomic request in it is a load operation. One can avoid returning values in the other cases

by tagging these instructions. Then, with the possible exception of these extra tag bits,

combining never generates extra traffic; often it will decrease it significantly.

* A semigroup is a set dosed under an associative operation, which in this case is map composition.
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Note that, in general, the order of combined requests is arbitrary and can be reversed.

This can be used to further simplify combining. For example, if the network always

chooses to effect a store before a load whenever two such requests are combined, then a

store never needs to return a value.

The situation of a store combined with a load, suggests a slight improvement in per-

formance by satisfying the load immediately. That is, the store would be forwarded to the

memory module and its value will also be returned, as soon as possible, back to the proces-

sors that issued the load. A computation on such machine is still equivalent to a computa-

tion on a machine with noncombining network, where local operations SEND, ACCESS, and

RECEIVE are atomic events. However, it is no longer true that ACCESS - RECEIVE; a pro-

cessor may get a reply to a load request long before the value returned is actually stored in

memory. This departure from the MASM model may lead to an incorrect behavior; in par-

ticular, constraints on the scheduling of events at each processor can not enforce sequential

consistency.

If <I> is a semigroup of mappings, then 'I' UilvJU^''^} ^^ ^ semigroup too. We have

fo id = id o f = f ,

fo ly = Iv , and

lyO f = If(v) •

Thus, if $» is tractable, then $lJ{Iv}U^*^} ^^ tractable. In other words, it is always possi-

ble to add load and store operations to a family of RMW operations, and combine them

all, without greatly increasing the complexity of the system.

Our discussion has assumed that stores and loads always affect an entire memory cell

(word of memory). If we assume a word-addressable machine, say with four byte words,

then combination of store operations that affect only bytes or half-words will require intro-

ducing store operations that affect any subset of bytes in a word. At a higher level, if one

combines atomic stores that affect components of a structured variable then one needs to

support stores that affect an arbitrary subset of the components of this variable.
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5.2. Associative Operations

Let B be an associative operation. Then fetch-and-Q{X,z) is equivalent to

RMW(X,6a), where BgCx) = x9a. The function fetch-and-QiX, a) corresponds to the indi-

visible execution of the following code.

function fetch-and- 6(X,a)

begin

temp - X;

X -X8a;
return(temp)

end

A fetch-and-6(X,a) followed by fetch-and-8(X,b) can combine into fetch-and-8(X,a9b),

since

eaoObCx) = ebCOaCx))

= (x8a)eb

= x8(a8b) (since 9 is associative)

= 6aeb(x) •

Thus, the semigroup {83} is tractable whenever 8 is easy to compute.

Perhaps the most important fetch-and-8 primitive for large-scale shared memory

machines is the fetch-and-add, which was discussed earlier. The mapping can be

represented by one computer word (the addend). Two other potentially useful fetch-and-8

primitives are fetch-and-OR, where OR is Boolean addition, and fetch-and-min. Fetch-and-

OR(X,l) is the test-and-set operation. Fetch-and-min is useful for allocation with priori-

ties.

5.3. Boolean Operations

The sixteen Boolean operations can also be combined, despite the fact that some of

them are not even associative operations. Moreover, each of the operations can be applied

to bit vectors, of one word size. We will first consider the unary Boolean operations.

Let 4> be the set of four Boolean functions on one variable, 0, 1, x, and x. The associ-

ated RMW operations are test-and-clear, test-and-set, load, and test-and-complement .
The

four functions in $ can be represented by two bits, and can be composed using the follow-

ing 4x4 table.
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by the 2x2 matrix of coefficients

ax + b

cx + d

a b

c d

If fys^^ is the Moebius function represented by the matrix A, then

Thus, a function is represented by four coefficients, and two functions are composed by

multiplying two 2x2 matrices.

We can now efficiently support all assignments of the form x*-x6c, where 9 is an arbi-

trary arithmetic operation, and c is a constant or a private variable. These assignments will

be executed atomically, while still being combined in the network. Such assignments form

a large part of the machine code in typical applications.

If one wishes to support only addition and multiplication, then it is sufficient to con-

sider functions of the form

x -* ax + b ,

which can be represented using only two coefficients. Combining two such mappings

requires two multiplications and one addition.

Hardware arithmetic operations are not associative. Use of the associativity law may

change occurrences of overflows in integer arithmetic, and may change occurrences of

overflows, underflows, and rounding errors in floating point arithmetic. As our combining

mechanism relies on associativity, the arithmetic may not produce the same results as

would the serial order of the operations. Furthermore, the transformations used are not

numerically stable when division occurs; they are numerically stable when divisions are left

out. In that respect, our combining mechanism suffers from the same shortcomings as

compiler optimization techniques that use transformations based on algebraic identities.

It is possible to obtain an accurate combining mechanism for fixed point operations,

not including division, by adding one extra bit to the intermediate values, thereby increas-

ing the range by a factor of two. If an overflow occurs in that increased range then an

overflow would have occurred in the serial execution of the operations in the restricted
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range. A similar technique of using guard bits will keep rounding errors under control

when floating point operations not involving division are combined.

5.5. Full-Empty Bits

Accesses to shared variables can be synchronized using memory tags. For example,

the HEP computer uses a. full-empty bit at each shared memory word [Sm]. These bits can

be used to synchronize accesses in a producer consumer fashion. Writing may be condi-

tional on the location being empty; a successful write sets the (full-empty) bit. Reading

may be conditional on the location being full; a successful read may clear the (full-empty)

bit.

A load operation has the same effect in memory as the corresponding conditional load

operation. We may therefore assume that load operations are always executed uncondi-

tionally: a processor can check the value of the full-empty bit returned by the load instruc-

tion to determine if it was successful. A conditional store instruction that fails returns a

negative acknowledgement; the processor may resend it later.

In order to implement this synchronization mechanism, consider the four memory

access instructions (which are defined formally below) that form the basis of those in

tagged memory architectures: load, load-and-clear, store-and-set, and store-if-clear-and-

set.

Let the pair (X.flag) represent the variable X and its associated full-empty bit flag.

Temporarily assume that stores are actually implemented as swaps, i.e. they return the old

value. In order to implement the instruction set as RMW instructions, one needs four

types of mappings.

(1) The identity mapping for /o(3(i: (X, flag) - (X,flag).

(2) The mapping for load-and-clear. (X,flag) - (X,0).

(3) The mapping for store-and-set: (X,flag) -« (v,l).

(4) The mapping for store-if-clear-and-set:

[ (v,l) if flag =
(X,flag)^

(X,l) if flag = 1
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To close this set of mappings under composition, two more mappings must be

included:

(5) The mapping (X.flag) - (v,0) is a store-and-clear. It implements a store-and-set fol-

lowed by a load-and-clear.

(6) The mapping

(v,0) if flag =

-I
(X.flag) 1 ^j^Q^ if flag = 1

is a store-if-clear-and-clear . It implements a store-if-clear-and-set followed by a load-

and-clear.

These requests can now be combined. The combine logic is simple. Each of the six

types of instructions can be encoded by a short opcode, an address, and optionally a data

word.

A store request carries one data value. A reply to a request needs to carry a data

value only if the request is a load or a combined store that contains a simple load instruc-

tion. If these store instructions are handled specially, then the number of data values

transmitted through a combining network will never exceed the number that would have

been transmitted in an uncombining network.

There is a problem if the instruction set includes a standard store instruction, i.e. one

that does not change the full-empty bit. If a store followed by a store-if-clear-and-set are

to combine, it cannot be determined a priori which store will actually be executed. One

solution is to forward both store values. A better solution is simply to reverse the order of

the requests (to be the store-if-clear-and-set followed by the store). These can be for-

warded as a store-and-set instruction.

Reversing the order does not always help. For example, if the operations store-if-

clear and store-if-set are combined, both store values have to be forwarded. As we will

see in the next section in a much more general context, even if we include all types of full-

empty instructions, no request will ever have to carry more than two store values.

We assumed in this section a busy-waiting model for synchronization: an operation

that fails returns a negative acknowledgement; the processor may retry later. An alterna-

tive mechanism is to queue a request at memory until it is executable. This decreases the
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network traffic. However, unless some time-out mechanism is available at the memory

controller, the hardware may deadlock.

Assume the two operations load-and-clear-if-set and store-and-set-if-clear are used to

access memory in a queueing system. Memory accesses at a location are executed in a

sequence of alternating loads and stores. Thus, a set of i load and j stores can be combined

into |i— j| + l operations: stores are combined with loads, with the excess of loads or stores

staying uncombined. While combining is not guaranteed to reduce traffic in the worst case,

one can expect it will do so in the average case.

5.6. Data-Level Synchronization

One can have more than two possible states (full and empty), and operations other

than read and write on data. In a general data-level synchronization scheme, we have a

semigroup <t> of mappings representing the RMW operations that can be executed, and a

set S of states. Each variable is tagged by its state. The execution of an operation on a

variable is conditional on its being in a suitable state; the operation also changes the

variable's state.

This mechanism can be represented by an automaton A = <<I5,S,6>, where 8:Sx$ - S

is the state transition function. Assume that variable X is in state s, and an RMW(X,f)

instruction is issued. If 8(s,f) = e (i.e. undefined) the instruction fails, and a negative ack-

nowledgement is returned. Otherwise, RMW(X,f) is executed, and the new state of X is

set to 8(s,f). Define the mapping f by

f

f>(y ^ = I

^ f(^) ,8(s.f)) if8(s, f)^€
(X,s) { ^^^ ^^ otherwise

Then the execution of the instruction RMW(X,f) under the control of the automaton A is

equivalent to the execution of the instruction RMW((X,s),f').

Consider now the case where the operations executed are stores and loads. The basic

instructions are then

(1) load(X,S,8): Load from X if state s is in S and change state to 8(s).

(2) store(X,v,S,8): Store the value v into X if state s is in S and change state to 8(s).

For uniformity, we represent a load by the tuple (X,fl,S,8), where the special value Cl

represents the fact that no store is executed. A combined request then has the form <X,
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(vi,Si,8i), ..., (Vk,Sk,8k)>, where the S; are disjoint sets of states. The meaning of this

instruction is: if state s is in S; then store v; (or store nothing if Vi= fi) and change to state

8i(s). If s is not in any S;, then the instruction fails.

A combined instruction that represents k atomic store instructions carries at most k

store values. Also, a combined instruction never carries more than |S| store values, where

|S| is the number of states of the controlling automaton A. This is in general the best pos-

sible bound: if there is an instruction store-if-state = s for each state s of A, then a com-

bined store may have to carry a distinct store value for each state. This is tractable when

the number of states is small, such as when a full-empty bit is used; it is not tractable when

the number of states is large. For example, the synchronization primitives defined by Zhu

and Yew [ZY] for the Cedar machine at the University of Illinois and by Pier and Gajski

[GP] use full word tags. With m bit tags, there are 2"^ possible states, and 2™ is the best

possible uniform bound on the number of store values in a combined request.

Memory accesses controlled by a regular automaton can be used to support simple

path expressions [CH]. Path expressions are used to synchronize access to shared objects.

For each such object there is a set of possible operations on it. A regular expression over

the alphabet consisting of these operations defines the language of legal sequences of

operation applications on each object.

A deterministic automaton corresponding to the path expression is built. Each object

is represented by a variable in memory, to which access is protected by this automaton.

Each execution of a protected operation is preceded by an access to that variable that per-

forms the corresponding automaton transition. Then the executions of the operations are

sequenced according to the path expression. The mechanism suggested in this section

allows an efficient implementation of such a system.

6. Rmw and Parallel Prefix

This section shows the relationship between the combining mechanism presented in

this paper with a well known computational problem, prefix computation. The combining

logic turns out to be an asynchronous version of a well known parallel synchronous algo-

rithm. This sheds further light on performance aspects of combining.
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Consider successive execution of the operations RMW(S,fi), ..., RMW(S,fn). These

operations return the values S, fi(S) fn-i( " ' ' (fi(S)) • • • ); the value

fn( (fi(S)) • • ) is stored in memory. Thus, execution of these instructions amounts to

the computation of S, fi(S), ..., f^C • • • (fi(S)) • • • ) or, equivalently, to the computation

of Is, Igo fj, .... Igo fjo • • • o fj,. This is a particular instance of the prefix computation

problem [LaF]: given Xj Xj,, compute Xi, Xi*X2, ..., Xj* • • • *x^, where the operation *

is an arbitrary associative operation. In our case, * is map composition.

Prefix computation when solved in parallel is known as parallel prefix. The memory

access mechanism proposed in this paper provides in fact a parallel solution to the prefix

computation problem. The computations are performed on the nodes of a tree in the inter-

connection network that connects the processors to one memory module. In a multistage

network, in which processors have at most one outstanding request to each memory loca-

tion, this is a physical tree, which is a subgraph of the network. In other cases this is a vir-

tual tree: operations pertaining to distinct levels in the tree are executed at the same node

of the network.

The problem solved by the combining network differs from parallel prefix in that the

order of the elements combined (with the exception of the first) is arbitrary. By ordering

the operations correctly, one obtains a distributed, asynchronous network that solves the

parallel prefix problem.

The computation is performed on a network of processes connected as a (not neces-

sarily complete) binary tree with n leaves. The inputs are stored at the n leaves of a binary

tree, which corresponds to the processors of the parallel computer. The root of the tree

has one parent, called superoot; it corresponds to the memory module that contains the

variable accessed; the internal nodes of the tree correspond to the combining switches in

the processor to memory interconnection network. We describe below in CSP notation

[Ho] the different types of processes.

Leaf Process

[Leaf:: val;

parent ! val;

parent ? val

]
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Internal Node Process

[Node:: Ival, rval, pval;

left_child ? Ival;

right_child ? rval;

parent ! lval*rval;

parent ? pval;

left_child ! pval;

right_child ! pval*lval

1

Superoot Process

[Superoot:: val;

child ? val;

child ! id

]

Let valj be the initial value at the /-th leaf. At the end of the computation the value at

the /-th leaf equals to valj* • • • *vali_i; the value at the superoot equals to val^* • • *valn.

If the tree is complete, then the operations performed by this tree are exactly the same

operations performed by the Ladner-Fisher parallel prefix network [LaF]. The global

clock synchronization used by their algorithm is replaced by local data-flow synchroniza-

tion. Each internal node performs two multiplications, of which [Ign] are trivial. Thus,

2n — 2— [Ign] nontrivial multiplications are done. The algorithm can be implemented to

run in 2 flgnl-2 multiplication cycles, when globally synchronized.

7. Conclusion

This paper provides and exemplifies a formal method for reasoning about the correct-

ness of parallel computer architectures. It provides the theoretical underpinnings of the

combining mechanism used by the NYU Ultracomputer and RP3. It presents a general

formulation of RMW operations and a general mechanism to efficiently support such

operations.

A significant amount of supplementary hardware is required to combine RMW opera-

tions. Each switch needs logic that is able to compute mapping compositions and mapping

applications; extra logic is also required at the memory module. The switches also need an

associative store to store information on combined requests.

The need for associative retrieval at the switches can be avoided at the expense of

more expensive labeling schemes. An implementation of an efficient switch that supports
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combining of fetch-and-add requests is described in [DKS], [DKSS]. This switch has been

partially implemented. The same scheme can be used for other RMW operations.

Note that one can use combining logic that detects only part of the combinable pairs.

Memory accesses are correctly performed even with partial combining, or no combining at

all. Thus, different cost-performance tradeoffs are possible.

Combining or partial combining can be used on a wide variety of interconnection net-

works. The only major restriction is that requests must return via the same route

(although in the reverse direction). Thus, the mechanisms described in this paper can be

easily adopted for use by direct connection machines, such as the cosmic cube [Se], where

the processors themselves act like network switches and the local memories at each node

are all view as part of a distributed, shared memory.
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